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ABSTRACT

Open source is ubiquitous and many projects act as critical in-
frastructure, yet funding and sustaining the whole ecosystem is
challenging. While there are many different funding models for
open source and concerted efforts through foundations, donation
platforms like PayPal, Patreon, and OpenCollective are popular and
low-bar platforms to raise funds for open-source development.With
a mixed-method study, we investigate the emerging and largely
unexplored phenomenon of donations in open source. Specifically,
we quantify how commonly open-source projects ask for donations,
statistically model characteristics of projects that ask for and re-
ceive donations, analyze for what the requested funds are needed
and used, and assess whether the received donations achieve the
intended outcomes. We find 25,885 projects asking for donations on
GitHub, often to support engineering activities; however, we also
find no clear evidence that donations influence the activity level
of a project. In fact, we find that donations are used in a multitude
of ways, raising new research questions about effective funding.
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1 INTRODUCTION

Open-source software is ubiquitous, but sustaining it is a challenge.
Open source plays critical roles in our software infrastructure, and
by extension in economic growth and almost every facet of modern
life, far beyond only technical software projects: it is used in almost
every product or in the process of creating products by companies
big and small, often in ways invisible to open-source maintainers
or without ever contributing back. Some argue that open source
provides just as important infrastructure as roads and bridges do
for the economy, yet its importance, and our dependence on it, are
often not recognized [15].

As all software projects [41], open source also needs continuous
effort to fix bugs and vulnerabilities and adapting to evolving tech-
nical and nontechnical environments and requirements to remain
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Figure 1: Adoption of donation platforms over time on

GitHub (number of new non-fork repositories per month).

relevant. With increasing popularity, demands for maintenance and
support work typically rise, including large numbers of support
requests, feature requests, and reported issues. When open-source
infrastructure is insufficiently maintained or even abandoned by
their developers, this can raise significant costs and risks for users
of such infrastructure, who might need to work around known bugs
or make significant changes to find alternatives. How to supply all
this needed maintenance and development work is an open and
sometimes controversial question.

Traditionally, much work in free software and open source has
been done by volunteers, but over the last decades many corpora-
tions got involved in open source, releasing their own open-source
projects and paying developers to work on open source. Open
source also provides business opportunities to found companies
selling premium features, support, or hosting services.

Sustaining open source is another significant challenge that the
community has identified and is discussing controversially [18, 32,
43, 45, 63, 65]. There is a patchwork of models to support open
source [16], including reliance on often-overworked volunteers
(many of which recently have raised concerns about stress and
burnout in the community [1, 6, 23, 31, 40, 43, 48, 76]), sponsorship
from corporations and foundations, selling premium versions, host-
ing services and support, raising money through books, consulting
or speaking engagements, and simply asking for donations.

In this paper, we focus on the latter, donation and crowd-funding
platforms, such as PayPal, Patreon and OpenCollective. Donations
are gaining popularity in open source as a potential viable model
for sustainability, as evidenced by the many community blog posts
and podcasts [32, 42, 45, 63, 65, 80], GitHub’s recent addition of
a Sponsors feature to prominently and uniformly support requests
for donations [81], and our own findings (see Fig. 1).

Even though donations seem to gain traction to support open-
source activities, little is known about their prevalence, success, and
impact. Through an exploratory mixed-methods empirical study,
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we investigate the goals, reality, and use of donations in open source,
contributing a deeper understanding of this new phenomenon, and
provide data, where there were previously often only opinionated
and controversial discussions. In summary, we contribute: (1) a
study design to identify open source projects requesting donations
and a census of donation requests on GitHub, (2) an analysis of
observable characteristics of projects requesting and receiving dona-
tions, (3) a list of commonly-stated reasons for asking for donations,
(4) a time-series analysis of donations’ effects on project activity,
and (5) an analysis of how donations are commonly spent.

We find 25,885 projects asking for donations on GitHub, most
commonly with PayPal and Patreon, typically with the goal of sup-
porting engineering activities. Many of these projects receive do-
nations but rarely enough to fund a full-time engineering position.
While we do not find strong evidence that received donations asso-
ciate with higher levels of activity in a project, we find a multitude
of different patterns of how received donations are spent. For exam-
ple, many projects that are successful at fund-raising do not spend
their funds. In addition, funds are often spent on non-engineering
community activities (e.g., travel), web hosting, and personal ex-
penses. By providing insights into what some open-source projects
are currently doing, our results (1) can lead to more realistic ex-
pectations regarding donations, (2) may shape future fundraising
activities, and (3) raise new questions for future research about
sustaining open-source funding.

2 BACKGROUND AND RELATED WORK:

OPEN SOURCE AND MONEY

Open-source software has a long and varied history [12, 50, 51, 74],
seeing increasing commercialization and professionalization in the
last decade. Open source has been recognized to have enabled sig-
nificant productivity gains [15, 29, 52] and is now broadly adopted
as fundamental infrastructure in most software projects [30, 49, 67].
However, practitioners and researchers have recognized sustain-
ability challenges, as a quickly growing amount of open-source
infrastructure needs to be maintained [7, 15, 42, 45, 48, 71].

Funding of open-source software has long been an issue, raising
questions about sustainability. Open source can be considered as a
public good or common-pool resource [55], which is free to use, but
therefore also potentially challenging to produce in a market setting.
There are many different approaches to fund the creation and main-
tenance of open source [16], including selling support, consulting,
and services around a project (e.g., the ‘RedHat model’), adopting
a combined open/closed source strategy (e.g., dual license, ‘open
core’), companies committing full-time or part-time developers to
open source (i.e., ‘corporate open source’) [4], or just asking for do-
nations. In many cases, companies and open-source projects band
together and create foundations to support open-source projects
by providing a governance framework, centralizing fundraising,
paying for infrastructure, and (sometimes) paying for engineering
work [36]. Yet, much of current open-source work seems to be still
performed by volunteers: according to GitHub’s recent representa-
tive survey [27], only 23 percent of the respondents indicated that
they contribute to open source as part of their job description.

Researchers have long studied why individual developers and
corporations participate in open source. Developers participate both

because of intrinsic (e.g., enjoyment or sense of obligation) and ex-
trinsic (e.g., pay, reputation, or own use) reasons [9, 26, 39, 58, 64, 73].
Economic motivations such as signaling one’s value in a labor mar-
ket have also been theorized [44] and empirically supported [13,
46, 47, 58]. Not all developers accept money for open-source work,
mirroring their motivations [37]. At the same time, companies often
aim to gain synergistic advantages either as the center of an ecosys-
tem [35] or by soliciting third-party contributions and cooperation
with others on non-strategic parts of their business [19, 75].

With the increasing popularity of open source and its use as
critical infrastructure in many projects, many developers perceive
rising demands on their time in terms of a constant stream of feature
requests, support questions, and bug reports [e.g., 23, 40, 43, 48, 70].
Developers who volunteer their time for open-source work increas-
ingly report stress and even burnout [e.g., 31, 40, 76], and turnover
can be high, threatening the sustainability of critical projects [11,
17, 33, 34, 48, 59, 62, 71, 77, 79]. Some developers thus hope that
donations are a path to sustain their own open-source activities.

While donations are often discussed by practitioners [e.g., 32, 63,
68], little is known about their actual prevalence or effectiveness.
Krishnamurthy and Tripathi [38] studied donations to SourceForge
(that is, donations to the hosting platform, not to the hosted projects)
back in 2009, finding among others that developers who were on the
platform longer were more likely to donate. Nakasai et al. [53, 54]
analyzed donations to the Eclipse foundation, finding that benefits
to donors and displaying badges can encourage donations, that
donations can lead to preferential treatment when closing issues
of donors, and that releases often trigger donations. Of course,
there is a vast amount of research on donations, philanthropy, and
altruism more broadly, ranging from studies on what influences
philanthropic giving (e.g., awareness of need and reputation) [2] to
effective altruism [66], which could inform many recommendations
of how to effectively raise donations for open source; however,
at this point our goal is to first understand the current landscape
of open-source donations, including their prevalence, goals, and
surrounding practices.

3 STUDY OVERVIEW

We adopt an exploratory mixed-methods research design [14], in
which we incrementally explore publicly available resources on
open-source projects and donations. We proceed iteratively, with
results from prior phases informing subsequent phases of research
(e.g., inspiring additional research questions to explore unexpected
results), and we frequently interleave quantitative and qualitative
methods to explore phenomena and seek explanations.

Ethical considerations. Given the sensitive topic, where money
and donations are often framed in the context of larger discussions
on fairness, stress, or even burnout, and the unequal distribution
of donations focused on few projects and individuals, we explicitly
made a decision to avoid interviews and surveys with a potentially
vulnerable population that already receive many survey requests
from researchers. For example, when developers ask for donations
as a “cry for help” because they have too little resources and time to
work on their open-source projects (see Sec. 6.2), we would rather
not add to their stress by asking for more of their time. Instead,
our research analyzes only public artifacts, including descriptions
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on GitHub repositories and project web pages, public information
on donation and crowdsourcing platforms, metadata from GitHub
activities and package releases, as well as blog posts and other
grey literature [22]. By aggregating data from different sources,
our research may make behavior and patterns more transparent
(e.g., projects spending little of their donations, see Sec. 8), but we
only analyze donation amounts and spending for those projects
that chose to use donation platforms that explicitly make such
information public in the first place, allowing anybody to perform
these kinds of analyses.

Scope. We study projects in two corpora: all 537,640 GitHub
repositories corresponding to npm packages and all 77,934,441
repositories on GitHub by May 23, 2019. The former is a subset
of the latter, but allows us to focus explorations first on a smaller
subset, that is known to be innovation friendly [3], with which
we are more familiar, which we can download in total, and for
which we can gather additional metadata (download counts and
dependencies). We typically start our exploration with the npm
corpus and then attempt to generalize to the GitHub corpus. We do
not consider projects that are not on GitHub, but given GitHub’s
dominance for open-source hosting (even projects hosted on other
platforms are often mirrored on GitHub and thus included in our
corpus, e.g., the Linux kernel), we expect that the GitHub dataset
is characteristic of open-source development more broadly, though
projects on GitHub may differ from the global population of open-
source projects in ways we do not account for.

Research steps. We report our research in five steps, centered
around five themes (see Fig. 2 for an overview):
(1) Frequency of donation requests: Using large-scale reposi-
tory mining, we start with a census of how many open-source
projects ask for donations (RQ 1) and which donation platforms
they commonly use (RQ 2). Results lead us to subsequently focus on
Patreon and OpenCollective, two popular and transparent services.
(2) Characteristics of projects asking for and receiving do-

nations: Next we explore, using multiple regression modeling,
characteristics of projects that are more likely to ask for donations
(RQ 3) and of those that are successful in raising donations (RQ 4).
(3) Expectations for donations: To understand expectations, we
analyze reasons developers give for asking for donations (RQ 5),
using qualitative text analysis techniques to generate testable hy-
potheses about the expected effects of donations.
(4) Observable outcomes of donations: To test whether dona-
tions associate with observable outcomes such as increase activ-
ity, we model the longitudinal effects of donations on a sample of
projects that successfully raised donations, using interrupted time
series designs (RQ 6).
(5) Use of donations: After finding only weak results regarding
donation outcomes, we use qualitative analysis to explore this dif-
ference between expectations and outcomes, focusing on how do-
nations were used in those projects (RQ 7).

4 STEP 1: FREQUENCY OF DONATION

REQUESTS

As a first step, we ask RQ 1: How common is asking for dona-

tions in open source? and RQ 2: Which donation platforms

are typically used to collect donations? We try to get a census
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Figure 2: Overview of our research.

of donation requests among all projects in our npm and GitHub
corpora and identify popular donation platforms for subsequent re-
search. We additionally explore changes over time (when donation
platforms are adopted and dropped) and common combinations of
donation platforms to understand trends, dynamics, and potential
confounds for subsequent research.

4.1 Research Methods

Our primary strategy to identify which repositories ask for dona-
tions, and with which donation platform, was to analyze README.md

files of GitHub repositories for links or mentions of specific dona-
tion platforms. We arrived at this method after several iterations of
refinement and validation.

Corpora. As mentioned in Sec. 3, we use a smaller npm corpus
and a larger GitHub corpus. The former includes all packages pub-
lished on npm that link back to a valid GitHub repository (needed
for analysis) as of May 23, 2019 (537,640 repositories). The latter
contains all 77,934,441 GitHub repositories indexed by GHTor-
rent [28] at that date, that are not forks of other repositories1 and
not marked as deleted. The former corpus is a subset of the latter.

We chose May 23, 2019 for taking a snapshot and as the end
date for all longitudinal analyses, because GitHub announced its
own donation platform feature that day [81], which may affect our
results but is too recent to reliably study its effect.

Identifying donation requests. We started with a popular and
manually curated list of funding models for open source [16] to
seed a list of 11 donation and crowdsourcing platforms, including
PayPal, Patreon, and Liberapay. We then manually sampled projects
that used these services and inspected their GitHub repositories
for signals indicating that they were doing so, observing that the
funding platforms were almost always referenced as links in the
repositories’ README.md files.

Next, we iteratively curated a list of donation platforms and cor-
responding search strings that would identify them in a markdown
file. To go beyond the initial 11 ones, we used two strategies: First,

1Requests for donations are automatically copied with the fork, adding noise. During
our manual analyses (details below) we also noticed that some repositories are copies
of other repositories without being labeled as forks on GitHub / in GHTorrent; the
repository name and contents are typically clear indicators of the duplicate status.
The duplicate repositories also tend to be abandoned. To automatically identify and
exclude such fork-like cases from our corpora, we developed and manually validated a
simple heuristic: among repositories with the same name but hosted under different
GitHub accounts, all of which link to the same donation service profile, only keep the
repository with the most GitHub stars and remove all others.
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Figure 3: Most popular donation services in npm (left) and

across GitHub (right) as of May 23, 2019.

we used online searches for donation platforms. Second, we con-
ducted a large-scale grep search for funding-related terms across
all markdown files in all 537,640 repositories in our npm corpus,
clones of which we had available locally on disk, using the terms
“donate,” “sponsor,” and “donation;” we thenmanually investigated a
random sample of 367 of the 8093 npm repositories with such terms
(representative sample at 95 % confidence level for ±5 % confidence
interval) for mentions of platforms that we missed. We found two
forms of donations that we could not accurately detect automati-
cally and thus excluded from our analysis: mentioning sponsors but
without an explicit platform to manage sponsorship and Bitcoin
were occasionally used but stated in many different ways so that all
search patterns we tried would either only recognize a small subset
of these repositories or yield too many false positives to be use-
ful. Our final list contains 12 donation platforms, all automatically
detectable in markdown files: Bountysource, Flattr , IssueHunt, Kick-
starter , Liberapay (including Gittip and Gratipay), OpenCollective,
Otechie, Patreon, PayPal, SALT , Tidelift, and Tip4Commit.

Some open-source projects request donations in multiple places.
For example, it is common to also link to donation platforms from
the project’s web page or to create a specific SPONSORS.md file (or
something similar). Doing a full analysis of the npm corpus, we
found that it is not uncommon to link donation platforms in other
markdown files, but in nearly all cases (98.2 %) those links are also
included in the README.md file; in addition, typically the link in the
README.md file was added earlier. Similarly, a manual analysis of a
random sample of projects for each donation platform showed that
links on a project’s web page are also usually redundantly included
in the README.md. Hence, we decided to search only in the README.md,
which is sufficiently accurate and more computationally efficient.

Collecting snapshot frequency data. For the 537,640 repositories
in the npm corpus, we performed a grep search over the README.md

files in the default branch and the latest revision on or before May
23, 2019. The GitHub corpus is too big to download all repositories
or even just all README.md files, hence we relied on the GitHub API
to search for projects that contained the donation-service-specific
terms in their README.mds. To avoid exceeding GitHub’s API limits,
we partitioned the search space using custom file size queries. We
then cloned the identified candidate projects and ran exactly the
same grep query on their May 23rd revision as we did for the npm
corpus.

Collecting longitudinal frequency data. For both corpora we iden-
tified when each donation platform was first introduced in the

README.md file and when it was removed (if ever). From the npm
corpus we analyzed all projects longitudinally; from the GitHub
corpus we analyzed all projects identified in the static snapshots,
i.e., at the scale of the GitHub corpus, we cannot identify projects
that previously asked for donations but no longer do now. Techni-
cally, we iterated over all revisions to identify the timestamp of the
commits that changed the result of our donation-platform detector
for each donation platform.

Threats to validity. As discussed, we cannot capture donations
outside of common donation platforms that are added as sponsors,
and we cannot capture donation requests through Bitcoin. Despite
careful validation, we may miss some donation platforms. Our
results should be considered as lower bounds, given that the detec-
tor has high precision (we are not aware of any instances where a
detected link to a donation service was not used for requesting dona-
tions), but also given that wemaymiss some repositories requesting
donations (a) when requests are made outside the README.md file or
(b) due to limitations of the GitHub API. The distribution of results
for missed repositories may differ from the one for detected reposi-
tories, though analyzing the 1.8 % repositories of the npm corpus
missed by focusing on the README.md file instead of all markdown
files revealed no obvious deviations.

4.2 Results

Overall, there are many projects asking for donations, but they
make up only a small fraction of our corpora (RQ 1): we found
that on our cutoff date, 1,145 out of the 537,640 repositories of our
npm corpus (0.2%) ask for donations. In our GitHub corpus the
proportion of projects asking for donations is even lower, with
25,885 out of 77,934,441 repositories (0.04%).

As summarized in Fig. 3, Patreon is the most common donation
platform by number of repositories in npm, followed by PayPal
and OpenCollective, then with much lower adoptions come other
services (RQ 2). Across the larger GitHub corpus, PayPal ranks
first, which suggests that the npm corpus is not representative of
all GitHub when it comes to fundraising; this divergence should
be further explored by future work.

Developers slowly started to ask for donations (in the form of
links to donation platforms) around 2012, with a significant increase
in recent years, as visible in Fig. 1; the only stagnating platform is
Flattr , likely related to the controversy around its sale in 2017.

While most repositories adopt only a single donation platform,
10.9 % of repositories ask for donations with multiple platforms
(PayPal + Patreon is the most common combination). Transitions
between donation platforms are relatively rare after the initial
adoption so is the removal of donation links.

5 STEP 2: CHARACTERISTICS OF PROJECTS

ASKING FOR AND RECEIVING DONATIONS

After identifying that only a small percentage of projects ask for
donations, we ask RQ 3: What are the characteristics of repos-

itories asking for donations? and RQ 4: What are the charac-

teristics of repositories receiving donations? For the latter, we
only analyze the repositories receiving funds through the funding
platforms Patreon and OpenCollective, which are popular and make
the funding amounts publicly available. For both questions, using
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multiple regression modeling, we check which publicly observable
project characteristics, such as popularity, activity level, or number
of contributors, associate with asking for or receiving donations.

5.1 Research Methods

The key idea is to create a sample of two types of repositories —
some that ask for donations and some that do not — then collect
characteristics of each repository and use statistical modeling to
identify which characteristics tend to associate, on average, with
repositories being of one or the other type. Similarly, for repositories
that ask for donations we model which characteristics associate
with more successful fundraising, in terms of amounts of donations
received.

Corpora. To study characteristics of repositories asking for dona-
tions (RQ 3), we cannot take the entire corpus from Step 1, because
only a small fraction of those repositories ask for donations, making
statistical modeling unsound. Instead, we take all the repositories
asking for donations from Step 1 and compare them to a control
group2 — a random subset — of repositories from the prior corpus
not asking for funding. We do this both for our npm corpus (1,145
asking for funding, 8,124 not asking, post outliers) and our GitHub
corpus (25,885 asking, and 109,289 not asking, post outliers).

To study who receives donations among those asking (RQ 4), we
only analyze the 817 npm and 6,516 GitHub repositories asking for
donations with either Patreon or OpenCollective, as only these two
services publicly display the received amount of donations.

Funding levels. We collected the funding level of a repository
from Patreon and OpenCollective for the associated donation pro-
file (personal profile on Patreon and project page on OpenCollec-
tive). As the funding level, we measure the amount of donations
received within the last 9 months before our cutoff date of May 23rd,
2019. Although Patreon only reports current monthly donations,
the Graphtreon website tracks donations over time; OpenCollective
natively provides a log of all transactions (earnings and expenses).

Project characteristics. For each repository, we collect a number
of characteristics that capture different dimensions of activity and
popularity, using a combination of locally cloned git repositories,
GHTorrent, the GitHub API, and the npm API, as appropriate:
the total number of commits up until May 23rd, 2019; a binary flag is
active indicating whether the repository had at least one commit in
the 9 months before that day; the size of the repository, measured in
kilobytes; the project age measured as months between the creation
of the repository and May 2019; a binary flag is org indicating
whether the repository is owned by an organizational account on
GitHub; the total number of issues onGitHub; and the total number
of stars on GitHub. In addition, for the npm repositories, we can
collect additional data: the total number of downloads and the reverse
dependency count, indicating howmany other npm packages depend
on the given repository.

Modeling. We estimate two sets of multiple regression models.
For RQ 3, we regress the binary dependent variable asks for dona-
tions on all the explanatory variables above using logistic regression.
For RQ 4, we estimate hurdle regression models with the same ex-
planatory variables to understand, among those repositories asking
2 Note that, due to the lack of a donation platform link, we cannot remove duplicate
fork-like repositories from the control group as we did in Section 4.

for donations, (a) what distinguishes those that receive any from
those that do not, and (b) only for those receiving donations, how
the amount received varies with the different project characteristics.
We use this split modeling strategy, known as hurdle regression,
because of the zero-inflation of our response variable — that is,
many projects asking for donations do not receive any.

We then follow a standard practice for model fit and diagnostics.
We log-transform variables with skewed distributions to reduce het-
eroscedasticity [24]; the model summary tables mention “(log)” next
to all transformed variables. We also conservatively remove outliers
for predictors with exponential distributions, i.e., those values ex-
ceeding k(1+2/n)median(x)+θ [56], where θ is the exponential pa-
rameter [60], andk is computed such that nomore than 1 % of values
are labeled as outliers; typically among these there are high-leverage
points that disproportionately affect regression slopes, reducing
the robustness of our models. We test for multicollinearity using
the variance inflation factor (VIF), comparing to the recommended
maximum of 5 [10]; the total number of issues variable exceeded the
threshold and was subsequently removed from the models; all other
variables were within acceptable VIF bounds. We assess goodness
of fit using the standard pseudo-R2 for the linear models and using
McFadden’s pseudo R2 [72] for the logistic models. We check the di-
agnostic plots for violations of modeling assumptions, finding none
that would invalidate the models. Finally, we report the regression
coefficients together with their p-values. The estimated coefficients
do not depend on the order of predictors in the regression equations
(i.e., we ran one-shot regressions). For each estimated coefficient,
we also report the units of variance explained (the “Deviance” and
“Sum sq” columns in the table), as derived from ANOVA type-II
analyses (i.e., each variable is added after all the others); these val-
ues, when relative to the total amount of variance explained by a
model (i.e., the column total), serve as a proxy for effect size.

Threats to validity. As in all empirical studies of this kind, our
measures for the studied characteristics can only capture some as-
pect of the underlying quality, and there are project characteristics
that we could not measure at scale and thus not did include in
the models (e.g., presence at conferences, marketing). We also note
that projects using other fundraising mechanisms than Patreon and
OpenCollective may differ from those using these two platforms
in unknown and unpredictable ways; our results should only be
interpreted with respect to this sample. Finally, our analysis does
not distinguish between donations requested for individuals and
donations for projects.

5.2 Results

Overall, the logistic regression model of npm projects asking for
donations compared to a randomly sampled control group of npm
projects not asking for donations (RQ 3; Table 1) fits acceptably well
(R2 = 31%), revealing several characteristics that distinguish the
two groups of projects on average, all with sizable effects. Recently
active projects are more likely to ask for donations (the strongest ef-
fect in themodel, 53 % of the variance explained), as aremoremature
projects (num commits, 8 %; project age, 9 %), holding other variables
fixed. Project popularity correlates positively with the likelihood
of asking for donations (num stars, 14 %; no additional variance
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Table 1: Characteristics of npm projects asking for dona-

tions.

Resp: Asks for donations
Coeffs (Err.) Deviance

(Intercept) −4.01 (0.19)∗∗∗

commits (log) 0.40 (0.05)∗∗∗ 72.95∗∗∗
size (log) −0.30 (0.03)∗∗∗ 125.74∗∗∗
project age 0.02 (0.00)∗∗∗ 85.94∗∗∗
is active 1.95 (0.09)∗∗∗ 502.20∗∗∗
is org −0.57 (0.10)∗∗∗ 33.63∗∗∗
stars (log) 0.27 (0.02)∗∗∗ 129.89∗∗∗
downloads (log) −0.02 (0.02) 0.88
dependents (log) 0.01 (0.05) 0.02

Num. obs. 9137
R2 0.31
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Characteristics of npm projects receiving donations

via Patreon and OpenCollective.

Hurdle model Count model

Resp: Received any Resp: Amount received

Coeffs (Err.) Deviance Coeffs (Err.) Sum sq.

(Intercept) 0.12 (0.38) 4.17 (0.39)∗∗∗

commits (log) −0.20 (0.12) 3.05 −0.26 (0.11)∗ 20.41∗
size (log) −0.10 (0.06) 2.80 0.06 (0.07) 2.67
project age 0.05 (0.01)∗∗∗ 58.63∗∗∗ −0.01 (0.00) 10.93
is active 1.33 (0.22)∗∗∗ 38.73∗∗∗ 0.00 (0.21) 0.00
is org 0.84 (0.26)∗∗ 10.78∗∗ 0.12 (0.20) 1.37
stars (log) 0.14 (0.06)∗ 6.06∗ 0.39 (0.06)∗∗∗ 182.17∗∗∗
downloads (log) −0.11 (0.06) 3.51 0.13 (0.05)∗∗ 28.60∗∗
dependents (log) 0.31 (0.11)∗∗ 8.98∗∗ −0.04 (0.08) 0.85

Num. obs. 735 527
R2 0.29 0.30
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

explained by num downloads). Repository size (13 %) and organiza-
tional affiliation (4 %) both correlate negatively with the likelihood
of asking for donations — bigger projects that are part of GitHub
organizations may be sustained through other channels, perhaps
needing donations less. The equivalent model of the whole GitHub
corpus (see supplementary material) confirms the main effects.
Projects asking for donations tend to be more popular (num stars,
81 % of the variance explained), more mature (num commits, 13 %),
and active recently (5 %); other variables have negligible effects.

Looking at the 817 npm projects using the Patreon and Open-
Collective services, we observe a highly skewed distribution of
received funds: min 0 USD, median 55 USD, mean 6108 USD, max
589,382 USD in the observed 9 month window. Regarding who
receives funding (RQ 4), not all repositories that ask for funding
actually receive any: only 575 (70 %) received any funding at all,
and only 45 repositories (5 %) received more than 1000 USD/month
— the level at which donations could support a single developer at

the 2018 US income poverty guidelines [68].3 The situation is simi-
lar across the larger GitHub corpus: 58 % of repositories received
donations; only 10 % received 1000 USD/month or more.

In the hurdle regression (RQ 4; Table 2), which distinguishes npm
projects that receive funding from those that do not, we observe
a positive correlation of the activity and popularity metrics with
the likelihood of receiving any funding. The strongest effects are:
project age (44 % of the variance explained), perhaps indicative of
the importance of reputation in the community, which develops
with time; and being recently active (29 %). Popularity as indicated
by the number of stars (4 %) and usage as indicated by the number
of reverse dependencies (6 %) are also positively correlated with the
likelihood of attracting funding. The count model (RQ 4; Table 2)
reveals that among projects receiving donations, only popularity
(number of stars, 74 %; and number of downloads, 12 %) correlates
with the amounts received. The equivalent models for the larger
GitHub corpus (see supplementary material) do not fit the data
well, suggesting that these characteristics might be npm specific.
More targeted analyses of different communities could help explain
this phenomenon, but go beyond the scope of this paper.

6 STEP 3: EXPECTATIONS FOR DONATIONS

To understand whether donations are effective, we first need to
understand the expectations that developers have toward them.
Hence, we ask: RQ 5: What do developers who ask for dona-

tions want to spend the money on? This question will help us
develop hypotheses to test whether expectations match outcomes.

6.1 Research Methods

As discussed in Sec. 3, we deliberately avoid surveys and instead
analyze already publicly available text. Specifically, we analyze
a sample of README.md files and profiles on online donation plat-
forms to identify reasons, hopes, goals, or statements about how
developers would spend funds they receive.

For this analysis, we assembled a sample of repositories with cor-
responding README.md files and donation profile pages. Specifically,
we downloaded the HTML donation profile pages of all npm repos-
itories using Patreon, OpenCollective, or Kickstarter , because on
those platforms, it is common to describe the project, funding levels
requested, and so forth; this resulted in 1259 candidate projects.
We then created a sample for subsequent qualitative analysis, as
follows. Observing that Patreon and OpenCollective profile pages
are often empty, we sorted all the HTML pages by file size and
sampled 100 randomly from among the larger half — the larger
HTML files are likely to contain more detailed descriptions. We ad-
ditionally selected the 14 largest Kickstarter campaigns in the npm
corpus, because they are typically very detailed. After removing 5
duplicates, our final sample contains 109 repositories.

We qualitatively analyzed the text of all README.md files and dona-
tion profile pages in our sample using card sorting [57]. Specifically,
two researchers extracted all text fragments that refer to expecta-
tions for funding, such as reasons given, goals set, or intentions on
how to spend funds received. We printed all fragments and then

3A donation income of 1000 USD/month could support a fulltime position in some
countries with lower costs of living and may provide part time support for developers
everywhere, however it is still far from a competitive salary for IT professionals.



How to Not Get Rich: An Empirical Study of Donations in Open Source ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

sorted them into groups, discussing and refining groups in the pro-
cess. Initial inter-rater agreement between the two coders was high
(Cohen’s kappa > 0.63); discrepancies were then discussed and the
cards were re-sorted together to finalize the categorizations.

Threats to credibility. Self-described goals for funding may not
honestly reflect the developers’ intentions and expectations, as
developers might self-censor when they perceive expectations to be
less socially acceptable [8]. While we cannot avoid such potential
bias, we note that it would similarly surface in interviews or surveys.
Though a discrepancy between what is displayed online and reality
is possible, project web pages contain all the information that open
source developers want other people in the community to know
about their projects. Since this content is what potential donors will
be seeing, it making sense to analyze it. We also point out that the
identified reasons contain those that are frequently mentioned in
grey literature (i.e., practitioners’ blog posts and talks about funding
in open source).

6.2 Results

A large number of analyzed repositories (41 %) did not list any expec-
tations or justifications or merely mentioned that donations “show
appreciation.” Among the identifiable expectations, we identified
4 themes:

Engineering: The requested funding is intended for creating
new features, resolving issues, improving the project, or paying
salary for a developer by 48% of the sampled repositories. While
some repositories request funds for specific features (especially in
Kickstarter campaigns), requests are often more generic — which is
also why we could not separate requests to support maintenance
from new development clearly. For example, one developer men-
tions in a Patreon page “I will be able to dedicate more time to the
development and improvement of existing components and plugins.”
Several projects explicitly suggest that the project is not sustainable
in its current form and funds are needed to continue development
and maintenance, often in a form that reads as a “cry for help”, e.g.,
“Before I give up [the project] completely I wanted to give this one last
try and see if I can find enough supporters who would like to use [it]
and a newer better version of it in the future!”

Community: Funding is requested for creating documenta-
tion and tutorials, keeping the project ad-free for users (which
improves the user experience for the community), supporting other
projects being used by the current one, and other community ac-
tivities in 18% of the sampled repositories, e.g., “I can spend less
time thinking about private monetization channels (e.g., taking on
support/consulting contracts) and instead work more on content that
benefits the entire community, e.g., more educational blog posts, videos
and even books!”

Project expenses: Funding is requested for cost associated with
running the project, commonly server and hosting fees, in 13 % of
the sampled projects, e.g., “The money from this Patreon keeps the
servers for my projects running.”

Personal: Funding is requested for taking time off from one’s
job to work on open source, paying off loans, buying coffee, and
generically increasingmotivation in 9 % of the sampled projects, e.g.,
"The S3,000 per month will be put toward my living expenses and the
student loan bills that I will need to start paying off during the project.”

Overall, donations are requested predominantly, but not exclu-
sively, to support engineering activities (RQ 5).

7 STEP 4: OBSERVABLE OUTCOMES OF

DONATIONS

After analyzing the intentions of developers for donations in the
previous step, we now askRQ 6: Do donations havemeasurable

effects on development and maintenance outcomes? Specifi-
cally, we observe and quantitatively model, across a large number
of projects, whether observed outcomes tend to change as projects
request and receive donations, using interrupted time series models.

While there are many interesting potential outcomes that can be
derived from the developers’ stated intentions, we focus on engi-
neering activities, which was the most commonly given reason and
can be operationalized at scale with public archival data. Specif-
ically, we observe the combined maintenance, development, and
support activities through two proxy measures:4 number of com-
mits, which captures both coding and noncode activities; and issue
resolution speed, which captures the efficiency of maintenance and
community support activities.

7.1 Research Methods

While receiving donations may have noticeable effects on the ac-
tivity metrics in specific individual projects, we are interested in
effects that generalize across many projects — only then can we
be confident that donations could be an effective mechanism to
promote open-source sustainability more generally. The key idea
behind our analysis is treating donations as an intervention and
observing (and modeling) how potential trends in the outcome
measures changed, if at all, after the intervention, across a large
sample of projects aligned on their respective intervention dates.
Over a large-enough sample, aligning the different projects’ time
series on the intervention date, which likely occurred at very dif-
ferent dates for each project, enables us to assume that the effects
of potential environmental confounding factors on the observed
trends are uniformly distributed. Therefore, any observable trends
in the outcome measures can be attributed to the intervention. This
approach is known as an interrupted time series design [5]; it origi-
nated in medical research and has since been applied successfully
in software engineering [e.g., 69, 78].

Variables. To perform this kind of modeling, we need to collect
historic data on donations, outcomes, and covariates. We collect:

(1) Intervention date: We record the date of the first donation
received by each project via Patreon or OpenCollective. We also
considered the date when a project posted the call for donations,
but decided against it, as there may be a lag before donations start
to arrive, which could impede the activity in the project.

(2) Monthly donations (control): We collect cumulative donations
from Patreon and OpenCollective in the observation window, as
described in Sec. 5. If the funding is used to support developers’
time, the amounts of funding could impact the levels of activity;
we model total rather than monthly donations because funds are
4Unfortunately, other hypothesized outcomes like increased developer motivation and
reduced developer stress are very difficult to observe and study longitudinally. While
it would be possible to recruit a cohort of developers and poll them repeatedly, for
example with the Maslach Burnout Inventory survey [61], such a study is very difficult
to conduct and far exceeds the scope of our exploratory work.
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n ot n e c ess aril y s p e nt i n t h e s a m e m o nt h t h e y ar e r ais e d.
( 3) M o nt hl y iss u es cl os e d (c o ntr ol): Usi n g G H T , w e c oll e ct

t h e n u m b er of iss u es cl os e d p er m o nt h. D uri n g p eri o ds wit h hi g h er
w or kl o a d ( m or e iss u es cl os e d), t h e iss u e r es ol uti o n ti m es m a y n at u-
r all y i n cr e as e, t h us w e a d d t his c o ntr ol t o t h e m o d el. We e x cl u d e d
iss u es t h at w er e cl os e d wit hi n a mi n ut e of o p e ni n g, t y pi c all y c a us e d
b y b ot a cti viti es.

( 4) M o nt hl y c o m mits ( o utc o m e): We c oll e ct t h e n u m b er of c o m mits
p er m o nt h usi n g G H T . C o m mits h a v e b e e n s h o w n t o b e a
r o b ust m e as ur e of a pr oj e ct’s l e v el of d e v el o p m e nt a cti viti es [ 7 1].

( 5) Iss u e r es ol uti o n s p e e d ( o utc o m e): Usi n g G H T , w e r e c or d
t h e a v er a g e ti m e t h at iss u es cl os e d i n a gi v e n pr oj e ct a n d m o nt h
h a v e b e e n pr e vi o usl y o p e n.

S a m pl e. T h e m o d eli n g t e c h ni q u e s ets r e q uir e m e nts o n w hi c h
pr oj e cts c a n b e a n al y z e d. S p e ci fi c all y, t h e pr oj e cts n e e d t o h a v e r e-
c ei v e d d o n ati o ns (i nt er v e nti o n) a n d n e e d t o h a v e s u ffi ci e nt a cti vit y
b ef or e a n d aft er t h eir first d o n ati o n, s u c h t h at tr e n ds a n d c h a n g es
t h er ei n, if a n y, c a n b e esti m at e d st atisti c all y; at l e ast 9 m o nt hs b e-
f or e a n d aft er t h e i nt er v e nti o n h as b e e n us e d i n t h e p ast [6 9 , 7 8 ],
h e n c e w e c h o os e t his t hr es h ol d h er e. Si n c e m a n y pr oj e cts i n o ur
pr e vi o us a n al ysis h a v e a d o pt e d d o n ati o ns e arl y i n t h eir hist or y or
o nl y r e c e ntl y r e c ei v e d t h eir first d o n ati o ns or h a v e n ot b e e n a cti v e
d uri n g t h e e ntir e p eri o d of o bs er v ati o n ( 9 × 2 m o nt hl y wi n d o ws),
o ur c or p us f or t his a n al ysis is n e c ess aril y s m all er. A g ai n, t o c oll e ct
r e c ei v e d d o n ati o ns, w e n e e d t o li mit o ur a n al ysis t o pr oj e cts usi n g
P atr e o n or O p e n C oll e cti v e .

A n ot h er c h all e n g e r el at es t o t h e a g gr e g ati o n l e v el. D uri n g o ur
e arli er m a n u al i n v esti g ati o n w e f o u n d t h at it is c o m m o n f or m ulti pl e
r e p osit ori es t o as k f or d o n ati o ns usi n g t h e s a m e pr o fil e ( U R L) o n
a d o n ati o n pl atf or m. T h e t y pi c al s c e n ari os ar e: ( a) a l ar g er pr oj e ct
or g a ni z e d i nt o m ulti pl e G H r e p osit ori es t h at all li n k t o t h e
s a m e d o n ati o n pr o fil e f or t h e l ar g er pr oj e ct; a n d ( b) d e v el o p ers
as ki n g f or d o n ati o ns wit h a p ers o n al pr o fil e o n m ulti pl e of t h eir
o w n r e p osit ori es. Si n c e w e c a n d et er mi n e f u n di n g l e v el o nl y p er
d o n ati o n pr o fil e, w e f urt h er gr o u p r e p osit ori es b y d o n ati o n pr o fil e
a n d tr e at t h e a cti viti es i n t h e e ntir e gr o u p as a si n gl e r e p osit or y,
i. e., w e a g gr e g at e all t h e v ari a bl es a b o v e p er d o n ati o n pr o fil e.

Si n c e t h es e li mit ati o ns r estri ct t h e p o ol of pr oj e cts, w e o nl y
r a n t his a n al ysis o n t h e l ar g er G H c or p us, wit h 3 3 7 pr oj e cts
m e eti n g o ur c o n diti o ns, of w hi c h o nl y 1 6 pr oj e cts r e c ei v e d m or e
t h a n 1 0 0 0 U S D i n t h e a n al y z e d 9 m o nt h wi n d o w.

St atistic al m o d eli n g. We m o d el t h e t w o i nt err u pt e d ti m e s eri es,
o n e p er o ut c o m e v ari a bl es, as m ulti pl e mi x e d- e ff e cts li n e ar r e-
gr essi o n m o d els, si mil ar t o pri or w or k [ 6 9 , 7 8 ]. B esi d es t h e v ari-
a bl es a b o v e, w e i n cl u d e t w o i nt e g er c o u nt ers f or ti m e wi n d o w,
w h os e esti m at e d c o e ffi ci e nts c a pt ur e t h e tr e n d b ef or e t h e i nt er-
v e nti o n ( m o nt h _i n d e x ) a n d c h a n g e i n tr e n d aft er t h e i nt er v e nti o n
(m o nt h _ aft er ); m or e o v er, w e i n cl u d e a d u m m y v ari a bl e i nt er v e nti o n,
w h os e esti m at e d c o e ffi ci e nt c a pt ur es t h e c h a n g e i n l e v el ass o ci at e d
wit h t h e i nt er v e nti o n. We f oll o w st a n d ar d m o d el fit a n d di a g n osti c
pr o c e d ur es, as d es cri b e d a b o v e i n S e c. 5.

T hr e ats t o v ali dit y. T h e a n al ysis is c o nstr ai n e d b y t h e o ut c o m es
w e w er e a bl e t o q u a ntif y, e. g. , n ot c o v eri n g o ut c o m es r e g ar di n g
n o n- c o d e a cti viti es or d e v el o p er str ess. F urt h er, as d o n ati o ns oft e n
r a m p u p sl o wl y, it is di ffi c ult t o d e fi n e a n e x a ct p oi nt t h at s h o ul d
b e c o nsi d er e d as a n i nt er v e nti o n; o ur r es ults ar e r o b ust t h o u g h
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Fi g u r e 4: T h e di st ri b uti o n of o ut c o m e s b ef o r e a n d aft e r r e-
c ei vi n g t h e fi r st d o n ati o n.

T a bl e 3: I nt e r r u pt e d ti m e s e ri e s r e g r e s si o n m o d el s.

C o m mit s m o d el I s s u e s p e e d m o d el
R es p: n u m c o m mits (l o g) R es p: iss u e s p e e d (l o g)

C o e ffs ( Err.)  C his q  C o e ffs ( Err.)  C his q

(I nt er c e pt) 0 .7 9 (0 .4 2 ) 1 .7 9 (0 .2 9 )∗ ∗ ∗

e ar ni n gs (l o g) 0 .3 0 (0 .0 6 )∗ ∗ ∗ 2 1 .2 5 ∗ ∗ ∗ − 0 .1 4 (0 .0 4 )∗ ∗ 9 .7 5 ∗ ∗

cl os e d iss u es (l o g) 0 .3 8 (0 .0 3 )∗ ∗ ∗ 1 3 4 .6 5 ∗ ∗ ∗

m o nt h _i n d e x 0 .1 5 (0 .0 2 )∗ ∗ ∗ 5 9 .5 9 ∗ ∗ ∗ 0 .0 5 (0 .0 2 )∗ ∗ 1 0 .6 9 ∗ ∗

i nt er v e nti o n 0 .0 3 (0 .1 6 ) 0 .0 5 − 0 .3 7 (0 .1 2 )∗ ∗ 9 .7 2 ∗ ∗

m o nt h _ aft er − 0 .2 5 (0 .0 3 )∗ ∗ ∗ 7 9 .7 0 ∗ ∗ ∗ − 0 .0 1 (0 .0 2 ) 0 .2 7

N u m. o bs. 6 2 1 0 4 9 1 2
R 2 0 .3 6 0 .3 3
∗ ∗ ∗ p < 0 .0 0 1 , ∗ ∗ p < 0 .0 1 , ∗ p < 0 .0 5

t o di ff er e nt o p er ati o n ali z ati o ns ( first ti m e as ki n g f or d o n ati o ns
a n d first ti m e r e c ei vi n g d o n ati o ns at di ff er e nt t hr es h ol ds). Fi n all y,
r es ults m a y b e d o mi n at e d b y t h e m aj orit y of pr oj e cts t h at r e c ei v e
l o w l e v els of d o n ati o ns; c o nsi d eri n g o nl y hi g h- e ar ni n g pr oj e cts
l e a v es t o o f e w pr oj e cts f or c o n fi d e n c e i n t h e st atisti c al r es ults.

7. 2 R e s ult s

Fi g ur e 4 s h o ws h o w t h e distri b uti o ns, c o m p ut e d o v er all t h e pr oj e cts
i n o ur s a m pl e, of t h e t w o m o nt hl y o ut c o m e m e as ur es, n u m b er of
c o m mits a n d iss u e r es ol uti o n s p e e d, e v ol v e b ef or e a n d aft er pr oj e cts
st art r e c ei vi n g d o n ati o ns. Vis u all y, t h e tr e n ds a p p e ar st ati o n ar y.

T o f or m all y t est t h es e tr e n ds, w e t ur n t o t h e r e gr essi o n m o d els
i n T a bl e 3. First, w e o bs er v e a sli g ht i n cr e asi n g tr e n d of c o m mit s
o v er ti m e ( β (m o nt h _i n d e x ) = 0 .1 5 ), w hi c h g ets r e v ers e d aft er t h e
i nt er v e nti o n (β (m o nt h _i n d e x ) + β (m o nt h _ aft er ) < 0 ), i. e., t h e pr e-
d o n ati o ns c o m mit a cti vit y i n cr e as es sl o wl y, b ut t h at i n cr e as e is n ot
s ust ai n e d i n t h e l o n g t er m, aft er t h e first d o n ati o n. T h e i nt er v e nti o n
its elf d o es n ot a p p e ar t o b e ass o ci at e d wit h a n y s h ort-t er m s hift
i n c o m mit a cti vit y o n a v er a g e (β (i nt er v e nti o n) is i n disti n g uis h a bl e
fr o m z er o). N ot a bl y, t h e f u n di n g l e v el ass o ci at es p ositi v el y wit h t h e
a m o u nt of c o m mit a cti vit y: pr oj e cts wit h hi g h er o v er all f u n di n g
t e n d t o b e m or e a cti v e; f or e v er y f a ct or e i n cr e as e i n e ar ni n gs ( n ot e
t h e l o g-tr a nsf or m e d pr e di ct or), t h e n u m b er of c o m mits is e x p e ct e d
t o g o u p b y e 0 .3 3 5 % , ot h er v ari a bl es h el d fi x e d ( d u e t o t h e
di ff er e nt c or p us t his e ff e ct is n ot c o m p ar a bl e t o S e c. 5). T h e fr a cti o n
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of variance explained by this predictor, however, is small.
The issue resolution speed model reveals an increasing trend

pre-intervention (β(month_index) = 0.05), i.e., over time issues
take longer to resolve on average, after controlling for the total
monthly workload. The trend does not change after the first dona-
tion received (β(month_after) ' 0). However, we note a negative
effect associated with the intervention itself (β(intervention) =
−0.37), suggesting a short-term decrease in issue resolution speed
after the first donation. Taken together, the two coefficients suggest
that the impact of donations is short-lived. As in the previous model,
increases in funding level associate with improvements in issue
resolution speed (note the reverse-coded dependent variable); the
issue resolution speed decreases by e0.14 ' 15% for every factor
e increase in earnings, other variables held fixed. The fraction of
variance explained by this predictor is again small.

To explore the effect of projects asking for donations as a ‘cry for
help’ (see Sec. 6), we explored another model among projects that
received no donations at all, using the time of asking for donations
as the intervention. Plots and model (in supplementary material)
show that after stagnant activity leading up to asking for donations
(and not getting any), activity levels actually decline slowly.

In a nutshell, we find some evidence, but not strong support, for
the hypothesis that donations lead to higher levels of development
or maintenance activity (RQ 6), though we find that projects asking
for but not receiving any donations actually decline in activity. We
suspect that the positive outcomes of donations may be more subtle
or more varied than captured by our analysis, therefore, in a last
step, we explore a small sample of projects in more depth.

8 STEP 5: USE OF DONATIONS

To explore reasons for the limited observable effects of donations,
we analyzed individual projects in more depth and found that the
use of donations (when publicly visible) differed significantly among
projects. We thus ask RQ 7: How are donations used?

8.1 Research Methods

After some exploratory analysis of 15 high-donation and medium-
donation projects, we identified that projects using OpenCollective
would provide the most insights because the donation profiles are
usually most detailed and they include a public list of expenditures.
We assembled a new corpus of 60 projects that asked for donations
using (only) OpenCollective. We started with the 15 npm projects
receiving the largest donations. To achieve diversity in our corpus,
we added 45 additional projects using stratified sampling: We di-
vided the OpenCollective projects in our GitHub corpus into three
strata – projects making more than an average of 1000 USD/month
in the last 9 months, projects making less than 100 USD/month,
and projects in between – randomly picking 15 projects each.

We started our exploration by automatically assembling sum-
mary descriptions for each project. Each description contains data
and plots on transaction histories and funding amounts collected
from OpenCollective. We then enriched the automatically assembled
summaries with notes by manually investigating public artifacts
of each project. We carefully read the project’s README.md file, web
pages, documentation, and donation profile pages, and investigated
their donation history (earnings and expenses) as well as their
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Spending < 25% Spending > 75%

Donations > 1000 USD/month 37 % 17%
Donations 100–1000 USD/month 59 % 10%
Donations < 100 USD/month 68 % 11%
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Figure 5: Spenders and savers.

GitHub activity charts at the repository and contributor levels.
To guide our investigation into how the donations are used, we
attempted to gather information on why the project asks for do-
nations, who receives the funds, and what the funds are used for.
After collecting raw observations for all 60 projects, three authors
read and discussed the results, looking for patterns in the data and
discussing potential implications of the observations.

Where possible, we then operationalized specific observations
(e.g., projects receiving but not spending donations, see below)
to quantify how frequent they are across all 540 projects in our
GitHub corpus that received donations through OpenCollective in
the last 9 months before our cutoff date May 23, 2019.

Threats to validity and credibility. Our observations can only
partially explain the previously observed mismatch between expec-
tations and outcomes regarding donations. Relying on public data,
rather than conducting in-depth interviews may lead to overgener-
alizations. Results may differ for projects that use other donation
services, for example, as OpenCollective’s public accountability may
influence behavior, even though it is explicitly designed to accu-
rately depict all project transactions.

8.2 Results

In the following, we discuss our observations, grouped by themes
that emerged during our qualitative analysis.

Savers vs spenders: We found that there are big differences
regarding spending: Some projects actively spend all raised funds
while others barely spend any, sometimes accumulating significant
amounts of money — in Figure 5 we show two examples.

In our sample, 24 projects (40 %) spent less than 25% of their
raised donations, and 9 projects (15 %) spent more than 75 %. When
automating this analysis across all OpenCollective projects in our
GitHub corpus, we found that saving is common in general, with
64 % spending less than 25% of their received donations and only
11 % spending more than 75%. The results can be observed across
different funding levels, though saving is less frequent among well-
funded projects as shown in Figure 5c — some projects with lower
funds may wait to accumulate more money for bigger expenses.

Types of expenses: We observed that most donations received
throughOpenCollectivewere spent on engineering-related expenses,
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Table 4: Distribution of 2957 OpenCollective transactions

across 540 GitHub projects.

Category Transactions Amount in USD

Engineering 1,133 1,316,225
Services 493 238,761
Travel/Food 333 104,875
Donations 591 79,751
Social 296 61,128
Unclassified 111 20,421

0% 50% 100%

Engineering
Services

Travel/Food
Donations

Social
Unclassified

(a) > S9000

0% 50% 100%

Engineering
Services

Travel/Food
Donations

Social
Unclassified

(b) Between

0% 50% 100%

Engineering
Services

Travel/Food
Donations

Social
Unclassified

(c) < S1000

Figure 6: Distribution of OpenCollective transaction cate-

gories across GitHub projects at three funding levels.

including paychecks to developers. Projects with lower volumes
of donations tend to spend a higher fraction on project expenses,
such as hosting and domains fees.

An interesting outlier in our sample is a well-funded project
owned by a large corporation, in which the main developers are
employees and donations (also largely but not exclusively received
from the corporation) are spent on supporting travel for other
community members and other community activities.

Usually, the way that projects spend funds aligns with what they
request donations for (if they give specific expectations in their
requests and if they receive enough donations). Of the 21 projects
that have clear reasons to ask for donations and clear expenses,
only one showed a discrepancy: it asked for donations to support
full-time maintainers and to grow tooling support but only spends
money on branding and travel; however, its donation income and
expenses are fairly low, so it is possible that funding engineering is
not feasible at the current funding level.

To automate this analysis across all GitHub projects collecting
donations using OpenCollective, we manually developed a classifier
to categorize a transaction description using keyword matching
into the categories engineering, services (e.g., servers), travel/food
(e.g., conference fees), donations to other projects, and social (e.g.,
merchandise). As shown in Table 4, engineering costs are still dom-
inating, with service costs in second place, aligning with the ex-
pectations we identified in Sec. 6. A breakdown by funding level
(Fig. 6) supports our observation that projects with high funding
levels spend funds primarily on engineering, whereas projects with
lower funding levels spend a larger proportion on services.

Recipients of funds: A majority of projects in our sample (43,
or 72 %) gave money to their top contributors. Among those, 21
projects gave money also to non-top contributors. Only two mid-
sized projects gave money only to non-top contributors. For one
project it was intended for hosting expenses, and for the other

project it was for maintenance work done by an external contrib-
utor. In general, projects that received fewer donations tended to
give money to fewer people and mainly to a single top contributor.
Projects that gave money to non-top contributors did so for various
reasons including investing in newcomers, paying for specific con-
tributions (e.g., bounty claims), and paying travel costs for speakers.

We expect that donations can significantly contribute to the
functioning of a community, encouraging onboarding, supporting
community events, or documentation, that may be hard to observe
directly in the outcome measures used in our analysis (Sec. 7).

9 DISCUSSION

Though only a small percentage of all open-source projects ask
for donations, we find that donations are a common mechanism
to support open-source work. As expected, more established and
more active projects are more successful at raising funds. However,
donations alone rarely ever raise enough funds to support paying
full-time developers for their work. The current level of funding
seems to provide at most marginal observable benefits to project
productivity in terms of the two variables we measured; the decline
of activity in projects unsuccessful in raising donations (Sec. 7) is
worrying for sustainability in general.

Our study is exploratory in nature and can only be a first step in
understanding the current state of donations in open source using
public data. Of course, there are many facets that we cannot explore
with our methods, as large parts of the funding landscape are not
publicized (e.g., PayPal donations, sponsorship). Still, our work
reveals insights that can be starting points for many interesting
future research directions.

First, we suggest researchers should exploreWhat level of funding
is actually needed to sustain open-source projects? From our obser-
vations (Sec. 8), we suspect that the answer varies widely from
funds to support multiple full-time engineers, to supplementing
one maintainer’s other income, to server costs, or to mere ‘thank
you’ gestures. We see that operating expenses, e.g., hosting costs,
are typically paid first. It is unclear whether many projects are not
spending their raised funds because they are waiting for larger
expenses, because they do not have more expenses, or because they
do not feel comfortable accepting money personally [cf. 37].

Second, another interesting direction is to compare different
forms of spending, orWhat kind of spending is effective at sustaining
open-source projects? We see a wide variety of different forms of
spending (Sec. 8), including paying engineering salaries, spending
on advertisement and community activities, supporting travel, and
paying non-core contributors — can the return on investment of
such different strategies be quantified and compared, as the move-
ment on effective altruism [66] does for charities? Unfortunately,
too few projects are transparent about their spending to use our
interrupted-time series method (Sec. 7), suggesting more qualita-
tive longitudinal research approaches. Ideally, subsequent research
should look at more nuanced outcomes (Sec. 6), such as success at
onboarding new contributors, reducing developer stress, and user
satisfaction, beyond the commit and issue activity in our study.

Third, while there are significant differences between open source
and traditional charitable organizations, we believe the open-source
community can learn from empirical research on philanthropy
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to determine How to effectively raise donations for an open-source
project? For instance, a recent metastudy identified 8 mechanisms
that drive charitable giving [2]. Our analysis of which projects
receive donations (Sec. 5) seems to align with the importance of
reputation observed in philanthropy, but many more factors can
be explored. For example, our results show that many projects are
not explicit about goals when raising awareness of need (Sec. 6) and
most projects do not demonstrate efficiency of using funds in that
they are rarely transparent about how they use received donations
and what outcomes they achieved (Sec. 8). As another example
broadly studied in philanthropy, it is worth exploring the positive
and negative effects of providing direct or indirect incentives to the
donor, from sending stickers, to promoting them as sponsors, to
preferential handling of their issue reports [53].

Finally, there is a dark side of money in open source that is worth
exploring: What are negative effects of collecting donations and how
can they be mitigated? Zhou et al. [79] observed that increased
involvement of payed developers in an open-source project can
crowd out volunteers; some developers observe more entitled users
even when small amounts of money are involved (e.g., expecting
rapid attention to their issues because they attached a S25 bounty);5
and preferential treatment of sponsors (e.g., in issue resolution [53]
or code review [25]) may be perceived as unfair. Furthermore, lit-
erature on volunteers suggests that paying volunteers a little can
be worse than not paying them at all because it may shift their
mindset from that of an intrinsically motivated volunteer to that of
an underpaid employee [20, 21]; in that sense, observing so many
open-source projects with minimal donations may be dangerous.

Overall, we argue that we need a better understanding of both
positive and negative effects of donations in open source and how to
more effectively raise and use donations. While we expect that do-
nations will always be only one of many mechanisms for sustaining
open source overall, we believe it may be an important one, given
that it is easy to adopt (compared say to founding a company), it may
support a large range of activities (including community support
and travel), it is broadly supported technically (now also directly
by GitHub), and there seems to be some acceptance by both indi-
viduals and corporations to support open source with donations.

10 CONCLUSION

We used mixed methods to explore the state of donations in open-
source projects.We found that only a small fraction of npm packages
and GitHub repositories ask for donations (RQ 1) and that the most
commonly used donation platforms are PayPal and Patreon (RQ 2).
The projects asking for and receiving donations tend to be more ac-
tive, more mature, and more popular (RQ 3 and 4). When asking for
donations, developers typically suggest that they want to support
code and non-code engineering activities, but covering operating
expenses, fostering community, and reducing stress are also men-
tioned (RQ 5). However, when modeling whether projects that start
to receive donations actually tend to be more active in engineering
activities, we do not find strong evidence (RQ 6). Exploring this
seeming mismatch between expectations and outcomes, we studied
how raised funds are spent and found that they are often spent in
line with purposes for which they were requested (if sufficient funds

5https://news.ycombinator.com/item?id=15747743

are raised) but also that many projects actually only spend a fraction
of their funds and that funding contributors beyond the top contrib-
utors is not uncommon (RQ 7). Overall, we provided data and raised
new research questions regarding needed funding, effective spend-
ing, efficient fundraising, and the downsides of donations (Sec. 9).
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